Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1294994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143564

RESUMO

The superficial dorsal horn (SDH) of the spinal cord contains a diverse array of neurons. The vast majority of these are interneurons, most of which are glutamatergic. These can be assigned to several populations, one of which is defined by expression of gastrin-releasing peptide receptor (GRPR). The GRPR cells are thought to be "tertiary pruritoceptors," conveying itch information to lamina I projection neurons of the anterolateral system (ALS). Surprisingly, we recently found that GRPR-expressing neurons belong to a morphological class known as vertical cells, which are believed to transmit nociceptive information to lamina I ALS cells. Little is currently known about synaptic circuits engaged by the GRPR cells. Here we combine viral-mediated expression of PSD95-tagRFP fusion protein with super-resolution microscopy to reveal sources of excitatory input to GRPR cells. We find that they receive a relatively sparse input from peptidergic and non-peptidergic nociceptors in SDH, and a limited input from A- and C-low threshold mechanoreceptors on their ventral dendrites. They receive synapses from several excitatory interneuron populations, including those defined by expression of substance P, neuropeptide FF, cholecystokinin, neurokinin B, and neurotensin. We investigated downstream targets of GRPR cells by chemogenetically exciting them and identifying Fos-positive (activated) cells. In addition to lamina I projection neurons, many ALS cells in lateral lamina V and the lateral spinal nucleus were Fos-positive, suggesting that GRPR-expressing cells target a broader population of projection neurons than was previously recognised. Our findings indicate that GRPR cells receive a diverse synaptic input from various types of primary afferent and excitatory interneuron, and that they can activate ALS cells in both superficial and deep regions of the dorsal horn.

2.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37786726

RESUMO

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify 3 clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 & ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.

3.
Sci Rep ; 13(1): 5891, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041197

RESUMO

Excitatory interneurons in the superficial dorsal horn (SDH) are heterogeneous, and include a class known as vertical cells, which convey information to lamina I projection neurons. We recently used pro-NPFF antibody to reveal a discrete population of excitatory interneurons that express neuropeptide FF (NPFF). Here, we generated a new mouse line (NPFFCre) in which Cre is knocked into the Npff locus, and used Cre-dependent viruses and reporter mice to characterise NPFF cell properties. Both viral and reporter strategies labelled many cells in the SDH, and captured most pro-NPFF-immunoreactive neurons (75-80%). However, the majority of labelled cells lacked pro-NPFF, and we found considerable overlap with a population of neurons that express the gastrin-releasing peptide receptor (GRPR). Morphological reconstruction revealed that most pro-NPFF-containing neurons were vertical cells, but these differed from GRPR neurons (which are also vertical cells) in having a far higher dendritic spine density. Electrophysiological recording showed that NPFF cells also differed from GRPR cells in having a higher frequency of miniature EPSCs, being more electrically excitable and responding to a NPY Y1 receptor agonist. Together, these findings indicate that there are at least two distinct classes of vertical cells, which may have differing roles in somatosensory processing.


Assuntos
Neurônios , Corno Dorsal da Medula Espinal , Camundongos , Animais , Oligopeptídeos , Interneurônios , Receptores da Bombesina
4.
Anal Biochem ; 665: 115062, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731712

RESUMO

G protein-coupled receptor associated sorting protein 1 (GPRASP1) belongs to a family of 10 proteins that display sequence homologies in their C-terminal region. Several members including GPRASP1 also display a short repeated sequence called the GASP motif that is critically involved in protein-protein interactions with G protein-coupled receptors (GPCRs). Here, we characterized anti-GASP motif antibodies and investigated their potential inhibitory functions. We first showed that our in-house anti-GPRASP1 rabbit polyclonal serum contains anti-GASP motif antibodies and purified them by affinity chromatography. We further showed that these antibodies can detect GPRASP1 and GPRASP2 in Western blot, immunoprecipitation and immunofluorescence experiments while a mutant of GPRASP2, in which the most conserved hydrophobic core of the GASP motifs is mutated, was no more detected. Further characterization of anti-GASP motif antibodies by ELISA and Surface Plasmon Resonance assays suggests that GASP motifs function as multivalent epitopes. Finally, we set-up an Amplified Luminescent Proximity Homogeneous AlphaScreen® assay to detect the interaction between purified ADRB2 receptor and the central domain of GPRASP1 and showed that anti-GASP motif antibodies efficiently inhibit this interaction. Altogether, our results suggest that anti-GASP motif antibodies could represent a valuable tool to neutralize the interaction of GPRASP1 and GPRASP2 with different GPCRs.


Assuntos
Proteínas de Transporte , Receptores Acoplados a Proteínas G , Animais , Coelhos , Transporte Proteico/fisiologia
5.
Neuroscience ; 510: 60-71, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581131

RESUMO

Gastrin-releasing peptide (GRP) in the spinal dorsal horn acts on the GRP receptor, and this signalling mechanism has been strongly implicated in itch. However, the source of GRP in the dorsal horn is not fully understood. For example, the BAC transgenic mouse line GRP::GFP only captures around 25% of GRP-expressing cells, and Grp mRNA is found in several types of excitatory interneuron. A major limitation in attempts to identify GRP-expressing neurons has been that antibodies against GRP cross-react with other neuropeptides, including some that are expressed by primary afferents. Here we have developed two antibodies raised against different parts of the precursor protein, pro-GRP. We show that labelling is specific, and that the antibodies do not cross-react with neuropeptides in primary afferents. Immunoreactivity was strongest in the superficial laminae, and the two antibodies labelled identical structures, including glutamatergic axons and cell bodies. The pattern of pro-GRP-immunoreactivity varied among different neurochemical classes of excitatory interneuron. Cell bodies and axons of all GRP-GFP cells were labelled, confirming reliability of the antibodies. Among the other populations, we found the highest degree of co-expression (>50%) in axons of NPFF-expressing cells, while this was somewhat lower (10-20%) in cells that expressed substance P and NKB, and much lower (<10%) in other classes. Our findings show that these antibodies reliably detect GRP-expressing neurons and axons, and that in addition to the GRP-GFP cells, excitatory interneurons expressing NPFF or substance P are likely to be the main source of GRP in the spinal dorsal horn.


Assuntos
Neuropeptídeos , Substância P , Animais , Camundongos , Peptídeo Liberador de Gastrina/metabolismo , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Células do Corno Posterior/metabolismo , Reprodutibilidade dos Testes , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Substância P/metabolismo
6.
Pain ; 164(1): 149-170, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543635

RESUMO

ABSTRACT: Neurons in the superficial dorsal horn that express the gastrin-releasing peptide receptor (GRPR) are strongly implicated in spinal itch pathways. However, a recent study reported that many of these correspond to vertical cells, a population of interneurons that are believed to transmit nociceptive information. In this study, we have used a GRPR CreERT2 mouse line to identify and target cells that possess Grpr mRNA. We find that the GRPR cells are highly concentrated in lamina I and the outer part of lamina II, that they are all glutamatergic, and that they account for ∼15% of the excitatory neurons in the superficial dorsal horn. We had previously identified 6 neurochemically distinct excitatory interneuron populations in this region based on neuropeptide expression and the GRPR cells are largely separate from these, although they show some overlap with cells that express substance P. Anatomical analysis revealed that the GRPR neurons are indeed vertical cells, and that their axons target each other, as well as arborising in regions that contain projection neurons: lamina I, the lateral spinal nucleus, and the lateral part of lamina V. Surprisingly, given the proposed role of GRPR cells in itch, we found that most of the cells received monosynaptic input from Trpv1-expressing (nociceptive) afferents, that the majority responded to noxious and pruritic stimuli, and that chemogenetically activating them resulted in pain-related and itch-related behaviours. Together, these findings suggest that the GRPR cells are involved in spinal cord circuits that underlie both pain and itch.


Assuntos
Células do Corno Posterior , Receptores da Bombesina , Camundongos , Animais , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Interneurônios/metabolismo , Prurido/metabolismo , Dor/metabolismo
7.
Sci Rep ; 11(1): 17912, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504158

RESUMO

A recently developed Phox2a::Cre mouse line has been shown to capture anterolateral system (ALS) projection neurons. Here, we used this line to test whether Phox2a-positive cells represent a distinct subpopulation among lamina I ALS neurons. We show that virtually all lamina I Phox2a cells can be retrogradely labelled from injections targeted on the lateral parabrachial area (LPb), and that most of those in the cervical cord also belong to the spinothalamic tract. Phox2a cells accounted for ~ 50-60% of the lamina I cells retrogradely labelled from LPb or thalamus. Phox2a was preferentially associated with smaller ALS neurons, and with those showing relatively weak neurokinin 1 receptor expression. The Phox2a cells were also less likely to project to the ipsilateral LPb. Although most Phox2a cells phosphorylated extracellular signal-regulated kinases following noxious heat stimulation, ~ 20% did not, and these were significantly smaller than the activated cells. This suggests that those ALS neurons that respond selectively to skin cooling, which have small cell bodies, may be included among the Phox2a population. Previous studies have defined neurochemical populations among the ALS cells, based on expression of Tac1 or Gpr83. However, we found that the proportions of Phox2a cells that expressed these genes were similar to the proportions reported for all lamina I ALS neurons, suggesting that Phox2a is not differentially expressed among cells belonging to these populations. Finally, we used a mouse line that resulted in membrane labelling of the Phox2a cells and showed that they all possess dendritic spines, although at a relatively low density. However, the distribution of the postsynaptic protein Homer revealed that dendritic spines accounted for a minority of the excitatory synapses on these cells. Our results confirm that Phox2a-positive cells in lamina I are ALS neurons, but show that the Phox2a::Cre line preferentially captures specific types of ALS cells.


Assuntos
Proteínas de Homeodomínio/metabolismo , Neurônios , Corno Dorsal da Medula Espinal , Animais , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/metabolismo , Sinapses , Tálamo/citologia
8.
J Med Chem ; 64(11): 7555-7564, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34008968

RESUMO

RFamide-related peptide-3 (RFRP-3) and neuropeptide FF (NPFF) target two different receptor subtypes called neuropeptide FF1 (NPFF1R) and neuropeptide FF2 (NPFF2R) that modulate several functions. However, the study of their respective role is severely limited by the absence of selective blockers. We describe here the design of a highly selective NPFF1R antagonist called RF3286, which potently blocks RFRP-3-induced hyperalgesia in mice and luteinizing hormone release in hamsters. We then showed that the pharmacological blockade of NPFF1R in mice prevents the development of fentanyl-induced hyperalgesia while preserving its analgesic effect. Altogether, our data indicate that RF3286 represents a useful pharmacological tool to study the involvement of the NPFF1R/RFRP-3 system in different functions and different species. Thanks to this compound, we showed that this system is critically involved in the development of opioid-induced hyperalgesia, suggesting that NPFF1R antagonists might represent promising therapeutic tools to improve the use of opioids in the treatment of chronic pain.


Assuntos
Analgésicos Opioides/efeitos adversos , Dipeptídeos/química , Receptores de Neuropeptídeos/antagonistas & inibidores , Animais , Cricetinae , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Feminino , Fentanila/efeitos adversos , Meia-Vida , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores Opioides/química , Receptores Opioides/metabolismo , Relação Estrutura-Atividade
9.
Pain ; 159(9): 1705-1718, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29708942

RESUMO

Opioid analgesics, such as morphine, oxycodone, and fentanyl, are the cornerstones for treating moderate to severe pain. However, on chronic administration, their efficiency is limited by prominent side effects such as analgesic tolerance and dependence liability. Neuropeptide FF (NPFF) and its receptors (NPFF1R and NPFF2R) are recognized as an important pronociceptive system involved in opioid-induced hyperalgesia and analgesic tolerance. In this article, we report the design of multitarget peptidomimetic compounds that show high-affinity binding to the mu-opioid receptor (MOPr) and NPFFRs. In vitro characterization of these compounds led to identification of KGFF03 and KGFF09 as G-protein-biased MOPr agonists with full agonist or antagonist activity at NPFFRs, respectively. In agreement with their biased MOPr agonism, KGFF03/09 showed reduced respiratory depression in mice, as compared to the unbiased parent opioid agonist KGOP01. Chronic subcutaneous administration of KGOP01 and KGFF03 in mice rapidly induced hyperalgesia and analgesic tolerance, effects that were not observed on chronic treatment with KGFF09. This favorable profile was further confirmed in a model of persistent inflammatory pain. In addition, we showed that KGFF09 induced less physical dependence compared with KGOP01 and KGFF03. Altogether, our data establish that combining, within a single molecule, the G-protein-biased MOPr agonism and NPFFR antagonism have beneficial effects on both acute and chronic side effects of conventional opioid analgesics. This strategy can lead to the development of novel and potent antinociceptive drugs with limited side effects on acute and chronic administration.


Assuntos
Analgésicos Opioides/uso terapêutico , Dor/tratamento farmacológico , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores Opioides mu/agonistas , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Insuficiência Respiratória/induzido quimicamente
10.
ACS Chem Neurosci ; 9(11): 2599-2609, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29727163

RESUMO

Neuropeptide FF receptors (NPFF1R and NPFF2R) and their endogenous ligand neuropeptide FF have been shown previously to display antiopioid properties and to play a critical role in the adverse effects associated with chronic administrations of opiates including the development of opioid-induced hyperalgesia and analgesic tolerance. In this work, we sought to identify novel NPFF receptors ligands by focusing our interest in a series of heterocycles as rigidified nonpeptide NPFF receptor ligands, starting from already described aminoguanidine hydrazones (AGHs). Binding experiments and functional assays highlighted AGH 1n and its rigidified analogue 2-amino-dihydropyrimidine 22e for in vivo experiments. As shown earlier with the prototypical dipeptide antagonist RF9, both 1n and 22e reduced significantly the long lasting fentanyl-induced hyperalgesia in rodents. Altogether these data indicate that AGH rigidification maintains nanomolar affinities for both NPFF receptors, while improving antagonist character toward NPFF1R.


Assuntos
Guanidinas/farmacologia , Hidrazonas/farmacologia , Hiperalgesia/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Receptores de Neuropeptídeos/antagonistas & inibidores , Analgésicos Opioides/efeitos adversos , Animais , Tolerância a Medicamentos , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
13.
J Clin Invest ; 127(7): 2842-2854, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28581443

RESUMO

The quantity and activation state of adipose tissue macrophages (ATMs) impact the development of obesity-induced metabolic diseases. Appetite-controlling hormones play key roles in obesity; however, our understanding of their effects on ATMs is limited. Here, we have shown that human and mouse ATMs express NPFFR2, a receptor for the appetite-reducing neuropeptide FF (NPFF), and that NPFFR2 expression is upregulated by IL-4, an M2-polarizing cytokine. Plasma levels of NPFF decreased in obese patients and high-fat diet-fed mice and increased following caloric restriction. NPFF promoted M2 activation and increased the proliferation of murine and human ATMs. Both M2 activation and increased ATM proliferation were abolished in NPFFR2-deficient ATMs. Mechanistically, the effects of NPFF involved the suppression of E3 ubiquitin ligase RNF128 expression, resulting in enhanced stability of phosphorylated STAT6 and increased transcription of the M2 macrophage-associated genes IL-4 receptor α (Il4ra), arginase 1 (Arg1), IL-10 (Il10), and alkylglycerol monooxygenase (Agmo). NPFF induced ATM proliferation concomitantly with the increase in N-Myc downstream-regulated gene 2 (Ndrg2) expression and suppressed the transcription of Ifi200 cell-cycle inhibitor family members and MAF bZIP transcription factor B (Mafb), a negative regulator of macrophage proliferation. NPFF thus plays an important role in supporting healthy adipose tissue via the maintenance of metabolically beneficial ATMs.


Assuntos
Tecido Adiposo/imunologia , Proliferação de Células , Ativação de Macrófagos , Macrófagos/imunologia , Oligopeptídeos/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Arginase/genética , Arginase/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Oligopeptídeos/genética , Proteínas/genética , Proteínas/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
14.
Neuropharmacology ; 118: 188-198, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28288815

RESUMO

Although opiates represent the most effective analgesics, their use in chronic treatments is associated with numerous side effects including the development of pain hypersensitivity and analgesic tolerance. We recently identified a novel orally active neuropeptide FF (NPFF) receptor antagonist, RF313, which efficiently prevents the development of fentanyl-induced hyperalgesia in rats. In this study, we investigated the properties of this compound into more details. We show that RF313 exhibited a pronounced selectivity for NPFF receptors, antagonist activity at NPFF1 receptor (NPFF1R) subtype both in vitro and in vivo and no major side effects when administered in mice up to 30 mg/kg. When co-administered with opiates in rats and mice, it improved their analgesic efficacy and prevented the development of long lasting opioid-induced hyperalgesia. Moreover, and in marked contrast with the dipeptidic NPFF receptor antagonist RF9, RF313 displayed negligible affinity and no agonist activity (up to 100 µM) toward the kisspeptin receptor. Finally, in male hamster, RF313 had no effect when administered alone but fully blocked the increase in LH induced by RFRP-3, while RF9 per se induced a significant increase in LH levels which is consistent with its ability to activate kisspeptin receptors. Altogether, our data indicate that RF313 represents an interesting compound for the development of therapeutic tools aiming at improving analgesic action of opiates and reducing adverse side effects associated with their chronic administration. Moreover, its lack of agonist activity at the kisspeptin receptor indicates that RF313 might be considered a better pharmacological tool, when compared to RF9, to examine the regulatory roles of RF-amide-related peptides and NPFF1R in reproduction.


Assuntos
Analgésicos Opioides/uso terapêutico , Hiperalgesia/tratamento farmacológico , Antagonistas de Entorpecentes/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptores de Neuropeptídeos/antagonistas & inibidores , Administração Oral , Animais , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Fentanila/farmacologia , Humanos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/química , Peptídeos/uso terapêutico , Piperidinas/química , Piperidinas/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeos/metabolismo , Valina/análogos & derivados , Valina/química , Valina/uso terapêutico
15.
Pharmacol Ther ; 160: 84-132, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896564

RESUMO

RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.


Assuntos
Amidas/metabolismo , Mamíferos/metabolismo , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Descoberta de Drogas/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...